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Abstract. Nonlinear statistical properties of Ventral Tegmental Area (VTA) of limbic brain are studied
in vivo. VTA plays key role in generation of pleasure and in development of psychological drug addiction.
It is shown that spiking time-series of the VTA dopaminergic neurons exhibit long-range correlations with
self-averaging behavior. This specific VTA phenomenon has no relation to VTA rewarding function. Last

result reveals complex role of VTA in limbic brain.

PACS. 87.19.La Neuroscience — 87.18.Sn Neural networks — 87.17.-d Cellular structure and processes —

87.10.+e General theory and mathematical aspects

1 Introduction

Methods of statistical physics are actively used for investi-
gation of probabilistic properties of neurons [1-12]. In pa-
pers [9,12] we studied probabilistic properties of spiking
time-series in the Red Nucleus of brain. It is believed that
the Red Nucleus is mainly responsible for motor activity
and, therefore, is relatively simple [13]. In the present pa-
per we will study the data obtained in vivo for so-called
Ventral Tegmental Area (VTA).

The Ventral Tegmental Area (VTA) is a midbrain nu-
cleus consisting of the dopaminergic cells. VTA is known
as a part of limbic brain that corresponds to such high
brain functions as cognition, learning, rewarding and emo-
tional behavior. VTA plays key role in the generation of
pleasure and in development of psychological drug addic-
tion. This area is also involved in control of the gonadal
hormones and of the reinforcement behavior [13].

The VTA dopaminergic cells fire in irregular manner
with a mean rare rate between 0.5 to 10 Hz. Firing pat-
terns of the VTA dopaminergic cells include single spikes
and short bursts containing 3—7 spikes. It is believed that
the bursting manner of firing is probably pulled on by re-
warding stimuli accepted from the glutamate neurons orig-
inating from prefrontal cortex and hippocampus. Bursting
activity of the normal VTA dopaminergic cells results in
dopamine release in limbic brain. Dopamine release from
VTA dopaminergic cells accompanies rewarding behavior.
VTA dopaminergic cells are autoregulated via dopamine
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autoreceptors expressed on their somas. Additionally, ac-
tivity of the VTA dopaminergic cells is regulated by sero-
tonin, noradrenaline and acetylcholine.

Specific nonlinear properties of the VTA dopaminergic
neurons are actively studied in recent years (see, for in-
stance [4,5] and references therein). Relationship between
these properties and rewarding function of VTA is one of
the topical problems. Therefore, comparative analysis of
the nonlinear properties of the VTA signals generated by
normal brains and ones generated by brains with geneti-
cally suppressed rewarding function of VTA seems to be
of significant interest. For this purpose we use genetically
defined rat model of depression (Flinders Sensitive Rat
Line — FSL).

It is shown in [9] that probability distribution of the
interspike intervals in Red Nucleus can be used to dis-
tinguish between normal rats and genetically defined rat
model of depression (FSL). It is shown below that proba-
bility distributions of the interspike intervals in FSL VTA
are significantly different from those in VTA of normal
rates. In VTA, similarly to Red Nucleus, these differences
can be related to the underlying kinetic problems of indi-
vidual neurons rather than to system behavior.

On the other hand, it is shown in paper [12] that the
spiking time-series of Red Nucleus neurons exhibit mul-
tifractal properties (related to system behavior), which
are generally the same for the normal and for the FSL
brains. We will show below that the spiking time-series
of the VTA neurons also exhibit multifractal properties
both for normal and for FSL brains. The VTA multifrac-
tality is different from multifractality of Red Nucleus. This
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difference between the long-range correlations in the Red
Nucleus and the VTA signals is then explained in the
terms of a self-averaging processes in the VTA signals.
The self-averaging phenomenon is observed for both the
FSL and the normal rats. Therefore, this phenomenon is
independent on rewarding function of VTA. This observa-
tion shows that the main differences between Red Nucleus
and VTA at system level cannot be reduced to rewarding
function of VTA.

2 Experimental methods and materials

Male Sprague-Dawley tars were used in all experi-
ments. Animals were anaethtised with chloral hydrate
(400 mg/kg., i.p.) and mounted in stereotaxic apparatus.
The hole was drilled 4.2 mm. anterior from the interaural
line and 1.0 mm lateral from the medial line. Extracellu-
lar recordings were processed by an electrode from VTA
(8.0—8.6 mm dorsal from the lambda). The constant level
of the anaesthesia was checked by EKG and chloral hy-
drate was added as necessary. Single unit recording was
carried out by amplitude discrimination. Each recording
from the single cell included at least 2000 spike events.
After each experiment, the recording site was marked by
a lesion caused by 15 mA DC for 10 sec. Brains were re-
moved and stained with formalin before histological ex-
amination. Frozen sections were cut at 50 mm intervals.
Microscopic examination of the sections was carried out
aiming to verify that the electrode tip was placed in VTA.

3 Short-range correlations

Figure 1 (a, b and ¢) shows probability density functions
of interspike intervals, P(7). P(7) were calculated using
data from three dopaminergic neurons in VTA of the FSL
rats (length of interspike intervals, 7, is given in seconds).
Solid curves (best fit) in this figure indicate lognormal
distribution.

Figure 2 (a, b and c) shows the probability density
functions for three dopaminergic neurons in VTA area of
the rats from control (healthy) group. Since we choose log-
log scales the straight lines (best fit) indicate power-law
distribution in this figure. In Figures 2b and ¢ one can
also see a sharp transition at 7 ~ 0.7 s from a power-law
distribution to a lognormal-like tale (bell shaped in the
log-log scales).

It is interesting that the data, obtained from the 4l
dopaminergic neurons, can be fitted by the same (log-
normal) probability distribution, as for the healthy non-
dopaminergic neurons, (i.e. for Red Nucleus, see [9] and
references therein). This may mean that in the ill state
the dopaminergic neurons lose their specific electrochemi-
cal properties which distinguish them from other types of
neurons. It should be noted that in the ill state they also
stop dopamine release, which is associated with rewarding
function of VTA neurons.

In the frames of kinetic interpretation [9] the lognor-
mal distribution of the interspike intervals (as observed in
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Fig. 1. Logarithm of probability density functions, P(7),
against logarithm of 7. P(7) were calculated using data from
three dopaminergic neurons (Figs. 1a, b and c¢) of the FSL rats.
Solid curves (the best fit) indicate lognormal distributions.
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Fig. 2. Logarithm of probability density functions, P(7),
against logarithm of 7. P(7) were calculated using data from
three dopaminergic neurons (Figs. 2a, b and c) of the rats from
control (healthy) group. Solid straight lines (the best fit) indi-
cate power-law distribution. Solid (bell shaped) curve is also
drawn in Figures 2b and c to indicate a lognormal-like tail.
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Fig. 1) has its origin in Gaussian distribution of the mem-
brane activation thresholds. The power-law distribution
observed for the healthy dopaminergic neurons (Fig. 2)
can be interpreted as one produced by Boltzman distribu-
tion of the membrane activation thresholds. It means that
short-range firing has purely kinetic nature (presumably
related to the ion channels kinetics, see [9] and references
therein). Therefore, in order to obtain information about
system behavior one should turn to the long-range corre-
lations, i.e. to multifractal analysis [12].

4 Long-range correlations

In reference [12] the long-range correlations in the spiking
time-series of Red Nucleus were investigated using mo-
ments (structure functions) of order p

(ATY) = ([T(n+r) = T(n)") (1)
where AT, indicates the temporal distance between the
(n + r)th and nth neuron spike, and {...) means average
over the time-series. Case r = 1, corresponding to the in-
terspike intervals, has been studied in previous section. In
the present section we study general case of function AT,
with arbitrary r (generalized interspike interval according
to terminology accepted in [12]).

Figures 3a and b show, as an example, the moments
of orders p = 1,2, ...7 versus r calculated for two cells: f11
(FSL rat # 1, cell # 1) and cl11 (control rat # 1, cell #
1). Upper sets of the data correspond to higher value of
order p. One can see that the data, like analogous data for
Red Nucleus neurons (cf. [12]), exhibit a profound interval
with scaling behavior

(ATE) ~ e (2)
for r > 10. Analogous situation takes place also for other
cells studied in the present experiment. Since the largest
bursts in the signals consist of no more than 10 spikes this
can be regarded as a long-range scaling.

Figures 4a and b show values of the generalized Hurst
exponents H, (see (2)) for the FSL and for the control
neurons. The solid straight lines indicate nonlinear de-
pendence of Hj, on p

H, = a+ bp'/3. (3)
Such nonlinear dependence of H), on p corresponds to so-
called bi-lognormal distribution

[(ln7)? = m? -

P((ln7)2) Nexp—{ =
related to self-averaging phenomenon, see Appendix A. In
order to check this directly several examples of probability
density function of (In1)? (where 7 = AT, with r = 30)
were shown in Figure 5. The axes are chosen as P((InT)?)
against (In7)? to check applicability of the bi-lognormal
distribution (4) to these data. The solid parabolas (best
fit) indicate the bi-lognormal distribution (4).
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Fig. 3. Moments of AT, versus r in log-log scales for p =
1,2...,7 (upper sets of data correspond to higher values of p).
Figure 3a shows data obtained for a FSL rat and Figure 3b
shows data obtained for a rat from control group.
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Fig. 4. H, versus p'/® for three FSL neurons (a), and for three
control (healthy) neurons (b). The straight lines (the best fit)
indicate nonlinear dependence (3).

It is interesting to compare this result to correspond-
ing results obtained for Red Nucleus in [12]. Again, as
for Red Nucleus, the probability distributions of the long-
range generalized interspike intervals are of the same type
for the FSL and for the control (healthy) neurons (at least
in the probabilty tails). For the more simple Red Nucleus
neurons we observe simple lognormal distribution of long-
range AT, (corresponding to linear dependence of H, on
p [12]), while for the dopaminergic neurons of VTA an
intermediate self-averaging process (transforming the log-
normality to bi-lognormality, see Appendix A) takes place.
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It is possible that the origin of the lognormal-like behav-
ior on the long ranges for the dopaminergic neurons is the
same as for the Red Nucleus cells. However, much more
complicated bursting activity of the dopaminergic neurons
on the intermediate scales results in the self-averaging phe-
nomenon.

It should be noted that the same self-averaging phe-
nomenon is observed both for the FSL and for the healthy
rats. Since rewarding function of VTA is suppressed for the
FSL rats this phenomenon is independent on rewarding
function of the VTA neurons. This observation, in partic-
ular, means that the specific system properties of VTA are
not reduced to its rewarding function.

The authors are grateful to K.R. Sreenivasan and to P. Levin
for cooperation and to the Machanaim Center (Jerusalem) for
support. Referee’s comments and suggestions were useful for
this paper improvement.

Appendix A

A natural modification of the Central Limit Theorem is
related to a possibility of an intermediate self-averaging.
Namely, the random variables a;, which evolve the sum

aNEai
i

utilized in the Central Limit Theorem, can be self-
organized in some clusters (bursts) in such a way that an
averaging over each cluster is possible. If the whole sys-
tem possesses also a self-similarity, then this intermediate
averaging can result in significant modification of the tails
of the probability distributions generated by the Central
Limit Theorem. For the ergodic dynamical systems (where
average over ensemble can be replaced by a time average)
this phenomenon can be described in the most simple way,
due to well known separation between so-called fast and
slow motions. Indeed, let denote the time average as

(A1)

T
a(t) = %/0 a(t)dt’. (A.2)

In the ergodic theorem one should take limit T' — oo
in (A.2) to obtain corresponding ensemble average. How-
ever, the dynamical system can posses two types of mo-
tions: fast and slow. To eliminate the fast motion from
consideration one can take an intermediate average (A.2)
with 7" much larger than characteristic times of the fast
motion. If T" is still much smaller than characteristic times
of the slow motions, then the new variable a(t) is still a
function of time, but now it is already “slow” function of
time.
Let us now take square power of equation (A.1)

2 2
awgaiJrgaiaj
i

i#]
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and let us take the intermediate average of this equation

_QN 2 a0
a E a; + E aia;.
i

i#j

(A.3)

The crucial point of the whole consideration is that the
statistical independence of the variables a; (a condition of
the Central Limit Theorem) is already realized on the fast
level, i.e. for intermediate average

a;a; ~ 0 (A.4)
ifi #j.
Then, we obtain from (A.3)
a?~ Y a2 (A.5)
i
Let us introduce new variables
a? = A? (A.6)
and
@ = A2 (A7)

In these variables equation (A.5) can be written as
A2~ A2
i

Variables A7 are statistically independent, i.e. for i # j

(4747) = (A7) (47)

(A.8)

(A.9)

where (...) means average over infinite time period (or en-
semble average).

Let us take the ensemble average (...) over equa-
tion (A.8)

(A.10)

(A7) ~ > (A7)

%

and then subtract equation (A.10) from equation (A.8).
Introducing new variables

=A% (4%) (A.11)
and
xi = A7 — (A7) (A.12)
we obtain
T~y @ (A.13)
where
(xizj) =0 (A.14)
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for ¢ # j. Then applying the Central Limit Theorem to
the slow variables x we obtain normal distribution of these
slow variables, i.e.

P(A?) = cexp — {W;ﬂ} (A.15)
or for variable A
P(A) = 2c|Alexp — {(Aﬂ_aﬂ} : (A.16)
Let us recall that from definition (A.6)
1A = Vaz. (A.17)

Thus, applying directly the Central Limit Theorem to
variable a (A.1) one obtains normal distribution for a.
However, if there is good separation between fast and slow
processes, then for variable A (defined by (A.6) or (A.17))
one obtains probability distribution (A.16). The last dis-
tribution is approximately normal in a small vicinity of
V(A2) = \/(a?), but for large deviation from the peak it
exhibits behavior very different from normal distribution.
Further we will call this new distribution bi-normal.

Appearance of the bi-normal distribution was shown
above for the ergodic processes. It is clear, however, that
the intermediate self-averaging phenomenon should take
place for a wider class of random processes (in particular,
for self-similar processes with clusterization on relatively
small scales). Microscopically normal (Gaussian) pro-
cesses affected by the intermediate self-averaging can re-
sult in the macroscopically bi-normal distributions. Since
near its peak the bi-normal distribution behaves as a nor-
mal one, we should look on the tales in order to distinguish
between the normal and the bi-normal situations.

Further, for multiplicative processes the microscopic
lognormal distribution could result in the macroscopic bi-
lognormal distribution. Multifractal properties of the log-
normal distribution are described by linear dependence of
generalized Hurst exponent H,, on p (see [9])

H,=a+0bp

whereas the multifractal properties of the bi-lognormal
distribution are described by a nonlinear dependence of
generalized Hurst exponent H), on p

H, = a+ bp'/3. (A.18)

To obtain (A.18) one should estimate the scaling moments
(o)
(ATP) ~ / ATP P(AT,) dAT, ~ PP (A.19)
0

with the bi-lognormal distribution

[(In AT;)2 — ((In AT;)2)]? } .

o2

P((In AT})?) ~ exp — {
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Fig. 5. Logarithm of probability density function P([ln7]?),
calculated for 7 = AT, with r = 30, against (In7)2. The solid
parabolas (the best fit) are drawn to indicate bi-lognormal dis-
tribution (4).

This estimate can be produced using rather cumbersome
saddle-point approximation, which is described in detail
in [14] and results in equation (A.18) for generalized Hurst
exponent H, from (A.19).
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